20 resultados para cp 751871

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the well-known problem of sorting under partial information: sort a finite set given the outcomes of comparisons between some pairs of elements. The input is a partially ordered set P, and solving the problem amounts to discovering an unknown linear extension of P, using pairwise comparisons. The information-theoretic lower bound on the number of comparisons needed in the worst case is log e(P), the binary logarithm of the number of linear extensions of P. In a breakthrough paper, Jeff Kahn and Jeong Han Kim (STOC 1992) showed that there exists a polynomial-time algorithm for the problem achieving this bound up to a constant factor. Their algorithm invokes the ellipsoid algorithm at each iteration for determining the next comparison, making it impractical. We develop efficient algorithms for sorting under partial information. Like Kahn and Kim, our approach relies on graph entropy. However, our algorithms differ in essential ways from theirs. Rather than resorting to convex programming for computing the entropy, we approximate the entropy, or make sure it is computed only once in a restricted class of graphs, permitting the use of a simpler algorithm. Specifically, we present: an O(n2) algorithm performing O(log n·log e(P)) comparisons; an O(n2.5) algorithm performing at most (1+ε) log e(P) + Oε(n) comparisons; an O(n2.5) algorithm performing O(log e(P)) comparisons. All our algorithms are simple to implement. © 2010 ACM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing need for cross sections far from the valley of stability, especially for applications such as nuclear astrophysics, poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by an effective nucleon-nucleon interaction. All these microscopic ingredients have been included in the latest version of the TALYS nuclear reaction code (http://www.talys.eu/).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combinatorial model of nuclear level densities has now reached a level of accuracy comparable to that of the best global analytical expressions without suffering from the limits imposed by the statistical hypothesis on which the latter expressions rely. In particular, it provides, naturally, non-Gaussian spin distribution as well as non-equipartition of parities which are known to have an impact on cross section predictions at low energies [1, 2, 3]. Our previous global models developed in Refs. [1, 2] suffered from deficiencies, in particular in the way the collective effects - both vibrational and rotational - were treated. We have recently improved this treatment using simultaneously the single-particle levels and collective properties predicted by a newly derived Gogny interaction [4], therefore enabling a microscopic description of energy-dependent shell, pairing and deformation effects. In addition for deformed nuclei, the transition to sphericity is coherently taken into account on the basis of a temperature-dependent Hartree-Fock calculation which provides at each temperature the structure properties needed to build the level densities. This new method is described and shown to give promising results with respect to available experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years international policies have aimed to stimulate the use of information and communication technologies (ICT) in the field of health care. Belgium has also been affected by these developments and, for example, health electronic regional networks ("HNs") are established. Thanks to a qualitative case study we have explored the implementation of such innovations (HN) to better understand how health professionals collaborate through the HN and how the HN affect their relationships. Within the HNs studied a common good unites the actors: the continuity of care for a better quality of care. However behind this objective of continuity of care other individual motivations emerge. Some controversies need also to be resolved in order to achieve cooperative relationships. HNs have notably to take national developments into account. These developments raise the question of the control of medical knowledge and medical practice. Professional issues, and not only practical changes, are involved in these innovations. © 2008 The authors and IOS Press. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas the resolving power of an ordinary optical microscope is determined by the classical Rayleigh distance, significant super-resolution, i.e. resolution improvement beyond that Rayleigh limit, has been achieved by confocal scanning light microscopy. Furthermore is has been shown that the resolution of a confocal scanning microscope can still be significantly enhanced by measuring, for each scanning position, the full diffraction image by means of an array of detectors and by inverting these data to recover the value of the object at the focus. We discuss the associated inverse problem and show how to generalize the data inversion procedure by allowing, for reconstructing the object at a given point, to make use also of the diffraction images recorded at other scanning positions. This leads us to a whole family of generalized inversion formulae, which contains as special cases some previously known formulae. We also show how these exact inversion formulae can be implemented in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developed for use with triple GEM detectors, the GEM Electronic Board (GEB) forms a crucial part of the electronics readout system being developed as part of the CMS muon upgrade program. The objective of the GEB is threefold; to provide stable powering and ground for the VFAT3 front ends, to enable high-speed communication between 24 VFAT3 front ends and an optohybrid, and to shield the GEM detector from electromagnetic interference. The paper describes the concept and design of a large-size GEB in detail, highlighting the challenges in terms of design and feasibility of this deceptively difficult system component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (deltaG(o)), which is the sum of enthalpic (deltaH(o)) and entropic (deltaS(o)) terms. These parameters are temperature dependent through the heat capacity change (deltaCp). The thermodynamic parameters deltaH(o) and deltaCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which characterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation of a broadband pulse through a dense resonant medium with a narrow transparency window is considered. We show that the pulse splits into a slowly propagating adiabatic part and a fast nonadiabatic part. © 2005 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of proton-proton collisions in which two b hadrons are produced in association with a Z boson is reported. The collisions were recorded at a centre-of-mass energy of 7TeV with the CMS detector at the LHC, for an integrated luminosity of 5:2 fb-1. The b hadrons are identified by means of displaced secondary vertices, without the use of reconstructed jets, permitting the study of b-hadron pair production at small angular separation. Differential cross sections are presented as a function of the angular separation of the b hadrons and the Z boson. In addition, inclusive measurements are presented. For both the inclusive and differential studies, different ranges of Z boson momentum are considered, and each measurement is compared to the predictions from different event generators at leading-order and next-to-leading-order accuracy. Copyright CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We find a simple analytic expression for the inverse of an infinite matrix related to the problem of data reduction in confocal scanning microscopy and other band-limited signal processing problems. Potential applications of this result to practical problems are outlined. The matrix arises from a sampling expansion approach to the integral equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We attempt to construct a unified evolutionary scheme that includes post-AGB systems, barium stars, symbiotics and related systems, explaining their similarities as well as their differences. Special attention is given to the comparison of the barium pollution and symbiotic phenomena. Finally, we outline a 'transient torus' evolutionary scenario that makes use of the various observational and theoretical hints and aims at explaining the observed characteristics of the relevant systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate ab initio intermolecular potential energy surfaces (IPES) have been obtained for the first time for the ground electronic state of the C 2H2-Kr and C2H2-Xe van der Waals complexes. Extensive tests, including complete basis set and all-electron scalar relativistic results, support their calculation at the CCSD(T) level of theory, using small-core relativistic pseudopotentials for the rare-gas atoms and aug-cc-pVQZ basis sets extended with a set of 3s3p2d1f1g mid-bond functions. All results are corrected for the basis set superposition error. The importance of the scalar relativistic and rare-gas outer-core (n.1)d correlation effects is investigated. The calculated IPES, adjusted to analytical functions, are characterized by global minima corresponding to skew T-shaped geometries, in which the Jacobi vector positioning the rare-gas atom with respect to the center of mass of the C2H2 moiety corresponds to distances of 4.064 and 4.229Å, and angles of 65.22° and 68.67° for C 2H2-Kr and C2H2-Xe, respectively. The interaction energy of both complexes is estimated to be -151.88 (1.817 kJ mol-1) and -182.76 cm-1 (2.186 kJ mol-1), respectively. The evolution of the topology of the IPES as a function of the rare-gas atom, from He to Xe, is also discussed. © 2012 Taylor and Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equilibrium structure of the hydrogen bonded complex H2O HF has been calculated ab initio using the CCSD(T) method with basis sets up to sextuple- quality with diffuse functions and taking into account the basis set superposition error correction. The calculations carried out confirm the importance of diffuse functions and of counterpoise correction to obtain an accurate geometry. The most important point is that the basis set convergence is extremely slow and, for this reason an accurate ab initio structure requires a very large basis set. Nevertheless, the ab initio structure is significantly different from the experimental r0 and rm structures. Analysis of the basis set convergence and of the approximations used for the determination of the experimental structures indicates that the ab initio structure is expected to be more reliable.